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Abstract
A family of point interactions of the dipole type is studied in one dimension
using a regularization by rectangles in the form of a barrier and a well separated
by a finite distance. The rectangles and the distance are parametrized by
a squeezing parameter ε → 0 with three powers μ, ν and τ describing the
squeezing rates for the barrier, the well and the distance, respectively. This
parametrization allows us to construct a whole family of point potentials
of the dipole type including some other point interactions, such as e.g. δ-
potentials. Varying the power τ , it is possible to obtain in the zero-range limit
the following two cases: (i) the limiting δ′-potential is opaque (the conventional
result obtained earlier by some authors) or (ii) this potential admits a resonant
tunneling (the opposite result obtained recently by other authors). The structure
of resonances (if any) also depends on a regularizing sequence. The sets of
the {μ, ν, τ }-space where a non-zero (resonant or non-resonant) transmission
occurs are found. For all these cases in the zero-range limit the transfer matrix

is shown to be of the form � = (χ 0
g χ−1

)
with real parameters χ and g depending

on a regularizing sequence. Those cases when χ �= 1 and g �= 0 mean that the
corresponding δ′-potential is accompanied by an effective δ-potential.

PACS numbers: 03.65.−w, 03.65.Db, 03.65.Ge

1. Introduction

Point and contact interactions are widely used in various areas of quantum physics, acoustics
and optics (see [1–3] and references therein). In many cases these interactions are modeled
by the one-dimensional Schrödinger equation:

−ψ ′′(x) + V (x)ψ(x) = Eψ(x) (1)

with a zero-range singular potential V (x) admitting exact solutions. Here the prime stands
for the differentiation with respect to the spatial coordinate x and ψ(x) is the wavefunction
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for a particle of mass m and energy E (we use units in which h̄2/2m = 1). Applications of
these models to condensed matter physics (see, e.g., [4–7]), including very recent studies on
curved quantum waveguides (see [8, 9] and the references therein), are of particular interest
nowadays, mainly because of the rapid progress in fabricating nanoscale quantum devices.

This paper aims to study the family of point potentials V (x) which are regularized by
finite-range sequences of the dipole type Vε(x)

.= λ
′
ε(x) with λ being a coupling constant

and ε a squeezing parameter. In simple terms, a regularized potential Vε(x) is supposed to
consist of a barrier and a well, the height and the depth of which tend to infinity while their
width is going to zero. In particular, the derivative of Dirac’s delta function δ(x), i.e. the
potential

V (x) = λδ′(x), δ′(x)
.= dδ(x)/dx, (2)

belongs to this family. In this case any regularizing sequence 
′
ε(x) must satisfy the same

integral properties as the δ′(x) function itself, i.e.

lim
ε→0

∫
R


′
ε(x) dx = 0 and lim

ε→0

∫
R

x
′
ε(x) dx = −1. (3)

Until recently there was an opinion that potential (2) does not allow any transmission
reflecting an incident quantum particle at all energies [10–12] resulting in separated particle
states on the left (R−) and the right (R+) half-lines. However, recently in a series of papers
[13–18] the existence of discrete resonance sets was established in the λ-space at which the
transmission across barrier (2) becomes non-zero leading to the existence of non-separated
states. More precisely, if the distribution δ′(x) is appropriately regularized by a sequence of
finite-range functions 
′

ε(x) with a squeezing parameter ε through the limit 
′
ε(x) → δ′(x) in

the sense of distributions, then in the zero-range limit (ε → 0) equation (1) with potential (2)
admits a countable set of resonances {λn}∞n=1 with a partial transparency. Moreover, as shown
for some particular cases of regularizing sequences 
′

ε(x) [14, 15] and proved rigorously in a
general case [17, 18], the structure of resonance sets depends on the 
′

ε(x) profile. Outside
this set, potential (2) is opaque acting as a perfect wall. The set of resonant potentials of
another type for which the average over R is non-zero, contrary to the first limit in (3), have
been obtained recently in [8, 9].

The reason why in some cases the δ′(x) barrier was proved to be opaque and in other
cases it was observed as a resonantly transparent system can be explained by the following
example. Let us construct the regularizing sequence consisting of a rectangular barrier and a
rectangular well both with width l which are separated by some non-zero distance ρ. More
precisely, we define the profile of this sequence as


′
lρ(x) = 1

l(l + ρ)

[
u

(
−x

l

)
− u

(
x − ρ

l

)]
, (4)

where u(ξ) = 1 if ξ ∈ (0, 1) and u(ξ) = 0 otherwise. Here l and ρ serve as two independent
squeezing parameters. Particularly, both the repeated distributional limits of function (4) give
the δ′(x) function, i.e.

lim
ρ→0

lim
l→0


′
lρ(x) = lim

l→0
lim
ρ→0


′
lρ(x) = δ′(x). (5)

However, the study of scattering properties using both these ways of regularization in
equation (1) with potential (2) gives different results. The first limit which can also be
represented as

δ′(x) = lim
ε→0


′
ε(x) = lim

ε→0

δ(x + ε) − δ(x − ε)

2ε
(6)
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Figure 1. Diagram of different ways of regularization of the δ′(x) function shown by five paths
1, . . . , 5 starting from the same rectangular profile given by the parameter values l = 1 and ρ = c.

results in the full reflection of an incident particle from the δ′(x) barrier as calculated explicitly
in [11] while the second limit (5) leads to the existence of a discrete resonance set {λn}∞n=1
in the λ-space where the transmission is non-zero [13]. Surprisingly, both the results are
correct and the solution of this riddle is that each of these results depends on the structure
of a regularizing sequence. Schematically, both repeated limits (5) can be illustrated by two
paths 1 and 2 shown in figure 1 starting from the same initial point, say (l, ρ) = (1, c) with
some c > 0. Along path 1 the δ′(x) barrier occurs to be fully reflecting, while following path
2 one obtains a resonant tunneling. Clearly, the δ′(x) function can be obtained from this initial
point by many other ways, such as path 3 (ρ = cl), path 4 (ρ = cl2) or path 5 (ρ = clτ with
τ > 2) and so on. One can expect that any sufficiently fast squeezing of distance ρ compared
to squeezing width l will result in the existence of a resonance set and in the opposite case
the δ′(x) barrier will be opaque for all λ �= 0. The goal of the present paper is to construct
a whole family of regularizing sequences, such as paths 3, 4 or 5 shown in figure 1, and to
study the existence and structure of resonance sets in the zero-range limit. Note that the case
of resonant tunneling through the second distributional limit (5) and illustrated by path 2 in
figure 1 can be represented as a particular example of a general regularizing profile 
′

ε(x) in
the form

δ′(x) = lim
ε→0


′
ε(x) = lim

ε→0
ε−2v(x/ε) (7)

with any function v(ξ) satisfying the ‘dipole’ conditions
∫

R
v(ξ) dξ = 0 and

∫
R

ξv(ξ) dξ = −1
[17, 18]. However, the existence of resonance sets for the particular case with l = ε and ρ = 0
where v(ξ) = u(−ξ) − u(ξ) [13] and for a general form of v(ξ) [17] conflicts with the
widely cited Šeba’s result (see theorem 4 of [10]). Therefore, very recently Golovaty and
Hryniv [18] have re-examined the proof of Šeba’s theorem and, as a result, they have found
that the δ′(x) barrier is not necessarily opaque, having clarified thus the situation concerning
these controversial results. Another particular case of regularization (4) which reduces to the
distributional limit of type (7) is the situation when l = ε and ρ = cε [16] with any positive
constant c. Here v(ξ) = (1 + c)−1[u(−ξ) − u(ξ − c)] and this case is illustrated in figure 1
by path 3.

The regularization procedure based on the potentials 
′
ε(x) consisting of rectangles

[13, 14, 16] also allows us to follow the way how the cancellation of divergences emerging from
the kinetic energy operator −d2/dx2 and the product λδ′(x)ψ(x) is accomplished explicitly
in the ε → 0 limit resulting in the total Hamiltonian defined on the wavefunctions ψ(x)
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discontinuous with its derivatives at x = 0. Therefore, the limiting total Hamiltonian is
no longer the sum of the kinetic and potential terms. More precisely, as found in [14], the
boundary conditions (with accuracy to a constant) at x = ±0 in the zero-range limit are of the
form

ψ(−0) = χ−1, ψ(+0) = 1, ψ ′(−0) = ikχ − g, ψ ′(+0) = ik, (8)

where the functions χ = χ(λ) �= 1 and g = g(λ) take finite values only at the resonances
λ = λn, n ∈ N. Equations (8) can be rewritten through the transfer matrix � = �(λ) which
connects the boundary conditions at x = −0 and x = +0:(

ψ(+0)

ψ ′(+0)

)
= �

(
ψ(−0)

ψ ′(−0)

)
, � =

(
χ 0
g χ−1

)
. (9)

Due to the dependence of the resonance sets {λn}∞n=1 on the regularizing families 
′
ε(x), one

can claim on the existence of a mapping 
′
ε(x) �−→ {�n}∞n=1 where �n

.= �(λn) in the
resonant case.

Using equation (9) and the standard representation

ψ(x) =
{

eikx + R e−ikx for x < 0,

T eikx for x > 0,
(10)

for the reflection (R) and transmission (T) coefficients, one can write these coefficients in terms
of χ and g as follows:

R = χ−1 − χ − ig/k

χ−1 + χ + ig/k
and T = 2

χ−1 + χ + ig/k
. (11)

As calculated in [14] and it will also be shown below for other cases that g = ∞ outside the
resonance values and therefore here we have R = −1 and T = 0, i.e. the complete reflection.
The case with χ = 1 and g �= 0 corresponds to the pure δ-potential, while in the opposite case
with χ �= 1 and g = 0 we have the pure δ′-potential. There exists the possibility [14] that
g �= 0 (and also χ �= 1) for some families 
′

ε(x) in the resonant case. For this case one can
claim that the point interaction regularized by a sequence of finite-range dipole-like potentials
is accompanied by a δ-interaction.

It is worth mentioning here that besides the point interactions described by matrix
(9) where χ �= 1, there exists another type called ‘the δ′-interaction’ which has been
proposed by Albeverio et al in [2, 3] (for further discussion on this point interaction see also
[10, 12, 17, 18]). Contrary to equation (9), the matrix � for the δ′-interaction with the
strength interaction constant β is given by the elements �11 = �22 = 1 and �12 = β, so that
at x = 0 the wavefunctions ψ(x) are discontinuous while their derivatives are continuous:
ψ ′(−0) = ψ ′(+0)

.= ψ ′(0) and ψ(+0) − ψ(−0) = βψ ′(0). Therefore, in order to avoid any
confusion throughout the paper we use only ‘the δ′-potential’ term for potential (2) having
kept ‘the δ′-interaction’ notation for the point interaction introduced in [2, 3].

Clearly, boundary conditions (9) are invariant under the transformation ψ(±0) →
χψ(∓0) and ψ ′(±0) → χ−1ψ ′(∓0). They form a subfamily of the whole family of non-
separated connection matrices [19]:

� = eiϑ

(
λ11λ12

λ21λ22

)
(12)

with the real parameters ϑ ∈ [0, π) and λij ∈ R, i, j = 1, 2, fulfilling the equation
λ11λ22 − λ12λ21 = 1.

In the present paper we define a more general class of point interactions than the δ′(x)

potential given by (2), generalizing the approach of Šeba [10] from one to three dimensions.
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Figure 2. Regions of existence and non-existence of non-zero transparency on the {μ, ν}-plane.
Non-trivial point interactions are located on the lines Lδ

.= �1 ∪�2 ∪�3 and Lδ′ .= �4 ∪�5 ∪�6.

To this end, we parametrize the regularizing barrier–well rectangles through powers. For the
case of two dimensions this approach has already been developed in [14] where the barrier of
height h and width l and the adjacent well of depth d and width r have been parametrized as

l = ε, h = aε−μ, d = bε−ν, r = ηε1−μ+ν, η
.= a/b, (13)

with any positive constants a, b, μ and ν. In the zero-range limit ε → 0 the region

�0
.= {1 < μ < 3/2, ν > 3(μ − 1)} (14)

(see figure 2) is fully transparent (T = 1), while at its boundary Lδ = �1 ∪ �2 ∪ �3 where

�1
.= {1 < μ < 3/2, ν = 3(μ − 1)},

�2
.= {μ = 3/2, ν > 3/2}, �3

.= {μ = ν = 3/2}
(15)

the system behaves effectively as a δ-interaction, i.e. χ = 1 and g �= 0 in the connection
matrix � defined by equation (9). Note that the system allows a full transmission in the region
{1 < μ < 3/2, ν > 0} with stronger singularity than the δ-potential. This transmission
with � = I where I is the matrix unit occurs due to the presence of a well resulting in the
cancellation of singularities as ε → 0. Outside the region �0 ∪ Lδ potential (2) is opaque
(T = 0), except for the sets

�4
.= {1 < μ < 3/2, ν = 2(μ − 1)},

�5
.= {μ = 3/2, ν = 1}, �6

.= {μ = ν = 2},
(16)

where the resonant tunneling mentioned above occurs, but this result is obtained if we follow
path 2 in figure 1. The sets are subsets of the δ′-line Lδ′

.= �6 ∪ �7 ∪ �8 (see figure 2) where

�7
.= {1 < μ � 2, ν = 2(μ − 1)} �8

.= {μ = 2, 2 < ν < ∞}. (17)

Thus, using the {μ, ν}-parametrization given by equations (13), one can describe the family
of all δ-interactions generalizing Šeba’s result [10] for the point μ = ν = 3/2 to the whole
line Lδ . The resonant tunneling occurs on the line Lδ′ being the set of all ε → 0 limits for the
δ′(x) function.

In this paper we construct the regularizing families adding a third parameter τ which
describes the squeezing rate of the barrier–well distance ρ to the powers μ and ν in
equations (13). This parameter measures how rapidly a barrier and a well in the 
′

ε(x) profile
approach each other. To illustrate our study with calculations, we choose the regularizing
sequence 
′

ε(x) to consist of rectangles. In this case we are able to control the cancellation

5
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of divergences emerging from the kinetic energy term and the singular potential. When this
cancellation occurs, the connection matrix � takes the form of (9). It is important to note
that the cancellation of divergences can be accomplished in different ways leading to different
families of matrices �.

2. A finite-range solution and its parametrization

Thus, we consider the starting situation when a barrier of height h and width l and a well of
depth d and width r are supposed to be at a distance ρ. Assume all these parameters to depend
on a parameter ε > 0 in such a way that the parameters l, r and ρ tend to zero while the height
h and the depth d go to infinity as ε → 0 forming a zero-range potential V (x) in equation (1).
Consequently, the regularizing sequence is defined as follows:


′
ε(x)

.=
⎧⎨
⎩

0 for x ∈ (−∞,−l), (0, ρ), (ρ + r,∞),

h for x ∈ (−l, 0),

−d for x ∈ (ρ, ρ + r),

(18)

where the ε-dependence will be specified below.
By lengthy but straightforward calculations one can represent a finite-range solution of

equation (1) with the regularized potential Vε(x) = λ
′
ε(x), where 
′

ε(x) is defined by (18),
through the transfer matrix � connecting the boundary conditions at x = −l and x = ρ + r:(

ψ(ρ + r)

ψ ′(ρ + r)

)
= �

(
ψ(−l)

ψ ′(−l)

)
, � =

(
�11�12

�21�22

)
. (19)

The matrix elements �ij , i, j = 1, 2, are given by

�11 =
[

cosh(pl) cos(qr) +
p

q
sinh(pl) sin(qr)

]
cos(kρ)

+

[
p

k
sinh(pl) cos(qr) − k

q
cosh(pl) sin(qr)

]
sin(kρ),

�12 =
[

1

p
sinh(pl) cos(qr) +

1

q
cosh(pl) sin(qr)

]
cos(kρ)

+

[
1

k
cosh(pl) cos(qr) − k

pq
sinh(pl) sin(qr)

]
sin(kρ),

�21 = [p sinh(pl) cos(qr) − q cosh(pl) sin(qr)] cos(kρ)

−
[
k cosh(pl) cos(qr) +

pq

k
sinh(pl) sin(qr)

]
sin(kρ),

�22 =
[

cosh(pl) cos(qr) − q

p
sinh(pl) sin(qr)

]
cos(kρ)

−
[

k

p
sinh(pl) cos(qr) +

q

k
cosh(pl) sin(qr)

]
sin(kρ) (20)

with k
.= √

E,p
.= √

λh − E and q
.= √

λd + E.
Now we specify the power parametrization of h, d, l, r and ρ using the single squeezing

parameter ε as follows:

l = ε, h = aε−μ, r = r0ε
γ , d = bε−ν, ρ = cετ (21)

with positive coefficients a, b, c, r0 and positive powers μ, ν, τ, γ . The parameter γ will be
determined below in terms of μ, ν and τ for each particular case. The case c = 0 is also

6
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available and it means that in the regularization procedure the second repeated limit (5) is
assumed. With the notation σ

.= √
aλ, for any positive μ and ν we expand pl and qr and

obtain

pl = σε1−μ/2

[
1 − k2

2σ 2
εμ + O(ε2μ)

]
,

qr = ρσ√
η
εγ−ν/2

[
1 +

ηk2

2σ 2
εν + O(ε2ν)

]
.

(22)

Our goal is to find the conditions under which the zero-range limit (ε → 0) of all the
elements �ij = �ij (ε) given by equations (20) is finite. Because of the form of equations (20),
it is convenient to consider the ε → 0 limit separately for the following four cases: (i) pl → 0
and qr → 0, (ii) pl → 0 but qr tends to a non-zero finite constant, (iii) both pl and qr tend to
non-zero finite constants and (iv) pl goes to a non-zero finite constant while qr → 0. In this
way, one can split the {μ, ν, τ }-space into several regions and analyze in each of these regions
the asymptotic behavior of the transfer matrix � and the scattering amplitudes (reflection and
transmission coefficients).

The matrix element �21 appears to be the most singular term in the region μ > 1 as
ε → 0. It can be well defined only if an appropriate cancellation of singularities occurs.
Therefore, the most direct way in the analysis is to start with the zero-range limit of �21. To
this end we expand this element in powers of ε and re-arrange this expansion as

�21 = �
(0)
21 + �

(1)
21 + �

(2)
21 + · · · , (23)

where the group of terms �
(0)
21 contains the most singular expressions which under appropriate

constraints cancel out as ε → 0. Under these constraints in the form of equations a non-
zero transmission across the limiting zero-range potential V (x) occurs. The next group �

(1)
21

contains less singular terms and using here the equations for a non-zero transparency, one can
find the regions in the {μ, ν, τ }-space where limε→0 �

(1)
21

.= g is finite. Under the conditions
of a non-zero transmission the next terms �

(2)
21 and so on vanish in the ε → 0 limit. Finally,

using these conditions, one can calculate the other limits which appear to be finite, namely
limε→0 �12 = 0, limε→0 �11

.= χ and limε→0 �22 = χ−1. Thus, as will be shown below,
including the third parameter τ leads to the same form of connection matrix � as in (9). The
set of available values of the coupling constant λ at which a non-zero transmission occurs can
be either continuous or discrete.

3. Point interactions with a non-zero and non-resonant transparency: case (i)

In this section we consider case (i) when both pl → 0 and qr → 0. The pl → 0 limit implies
the inequality μ < 2 and since the singular behavior occurs only for μ > 1, the region of
interest is the interval 1 < μ < 2. The other limit qr → 0 implies the inequality γ > ν/2.
We expand �21 in the form

�21 = p2l

(
1 +

p2l2

6

) (
1 − q2r2

2

)
− q2r

(
1 +

p2l2

2

) (
1 − q2r2

6

)

−p2lρ

(
1 +

p2l2

6

)
q2r

(
1 − q2r2

6

)
+ · · · . (24)

In this expansion the most singular part �
(0)
21 can be arranged in two ways as follows.

7
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3.1. An effective δ-interaction: subcase (ia)

First we consider the situation when the most singular part consists of the following two terms:

�
(0)
21 = p2l − q2r = σ 2ε1−μ − r0σ

2

η
εγ−ν + · · · . (25)

These terms cancel out in the ε → 0 limit, resulting in the limit �(0)
21 → 0 if γ = 1−μ+ν > 0

and r0 = η. Since γ > ν/2, we have 1 − μ + ν > ν/2 leading to the inequality ν > 2(μ − 1).
Using expansion (25), one can write the next part �

(1)
21 in expansion (24) in the form

�
(1)
21 = p2l

2

(
p2l2

3
− q2r2

)
− q2r

2

(
p2l2 − q2r2

3

)
− p2lq2ρr

= −p4l2

3
(l + 3ρ + r) + · · ·

= −σ 4

3
(ε3−2μ + ηε3−3μ+ν + 3cε2−2μ+τ ) + · · · . (26)

As follows from these asymptotics, the limiting matrix element �21 will be finite if the
inequalities

3 − 2μ � 0, 3 − 3μ + ν � 0, τ � 2(μ − 1) (27)

hold simultaneously. These inequalities define the regions in the {μ, ν, τ }-space where a
non-zero transparency takes place as ε → 0. These regions will be found below on the basis
of inequalities (27).

As regards the other elements of the matrix �, due to equations (21) and inequalities
(27), we obtain the zero limit of �12 and finite limits for �11 and �22, namely �11 → 1 and
�22 → 1. Thus, the connection matrix � in the ε → 0 limit has the form of (9) with χ = 1
and the constant g which can be calculated explicitly using asymptotics (26) with inequalities
(27). The regions in the {μ, ν τ }-space where g is finite exist if τ � 2(μ − 1) and, as a result,
we define the following sets (see figure 3):

M0
.= {1 < μ < 3/2, ν > 3(μ − 1), τ > 2(μ − 1)},

M1
.= {1 < μ < 3/2, ν = 3(μ − 1), τ > 2(μ − 1)},

M2
.= {μ = 3/2, ν > 3/2, τ > 1},

M3
.= {μ = ν = 3/2, τ > 1},

N0
.= {1 < μ < 3/2, ν > 3(μ − 1), τ = 2(μ − 1)},

N1
.= {1 < μ < 3/2, ν = 3(μ − 1), τ = 2(μ − 1)},

N2
.= {μ = 3/2, ν > 3/2, τ = 1},

N3
.= {μ = ν = 3/2, τ = 1}.

(28)

Then the coupling constant g is given by the following values:

g = −a2λ2

3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for M0 and �0

η for M1 and �1

1 for M2 and �2

1 + η for M3 and �3

3c for N0

η + 3c for N1

1 + 3c for N2

1 + η + 3c for N3.

(29)

8
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Figure 3. The regions of existence of non-zero transparency in the {μ, ν, τ }-space including the
particular case of two dimensions (τ ≡ 0). In the τ � 2(μ − 1) half-space planes M1, M2,
N0, lines M3, N1, N2 and point N3 form the trihedral surface Sδ where the system behaves as a
δ-potential with the effective coupling constant g given by equations (29). In the interior of this
trihedral M0, not shown in figure, the system is completely transparent. The similar δ-interaction
behavior occurs in the plane τ ≡ 0 on lines �1,�2 and point �3 forming the boundary Lδ of
fully transparent region �0. Plane P0 and its boundary consisting of lines P1, P2 and point P3 (all
these sets lie in the τ = μ − 1 plane) correspond to δ′-potentials with the possible addition of an
effective δ-interaction as described by equations (34).

Instead of the closed line Lδ , now we have the closed two-dimensional trihedral surface
Sδ

.= M1 ∪ M2 ∪ M3 ∪ N0 ∪ N1 ∪ N2 ∪ N3.
As follows from equations (29), the sets �0 and M0 are regions of complete transparency.

On the boundaries of these sets, the transparency is partial for all λ �= 0 being the same as in
the case of the δ-potential with the coupling constant g given by equations (29). Outside the
sets �0 ∪ Lδ and M0 ∪ Sδ , the transparency is zero and the system behaves as a perfect wall,
except for some sets with a non-zero transmission to be considered below.

3.2. The δ′-potentials with a non-zero and non-resonant transparency: subcase (ib)

Let us now include into the most singular expression �
(0)
21 the first term from the group with

ρ in expansion (24). Then, instead of equation (25), we find

�
(0)
21 = p2l − q2r − p2lq2ρr

= σ 2ε1−μ − r0

η
σ 2εγ−ν − cr0

η
σ 4ε1−μ+γ−ν+τ + · · · . (30)

First, we note that the powers of ε at all the three terms have to be equal and this results in
the equations 1 − μ = γ − ν = 1 − μ + γ − ν + τ from which we immediately obtain the
equations γ = 1 − μ + ν and τ = μ − 1. Next, all the three terms in (30) cancel out if in
addition the equation r0 = η/(1 + acλ) < η holds.

Now, instead of expansion (26), we have to analyze the zero-range limit for the expression

�
(1)
21 = p2l

2

(
p2l2

3
− q2r2

)
− q2r

2

(
p2l2 − q2r2

3

)
− p2lq2r

6
(p2l2 − q2r2)ρ + · · · . (31)

Using asymptotics (22), expansion (31) can be transformed into

�
(1)
21 = − σ 4

3(1 + cσ 2)

(
ε3−2μ +

η

1 + cσ 2
ε3−3μ+ν

)
+ · · · . (32)

9
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Concerning the other matrix coefficients, we have limε→0 �12 = 0 and the asymptotics

�11 = 1 + cσ 2 +
ησ 2

1 + cσ 2
ε2−2μ+ν + · · · ,

�22 = 1

1 + cσ 2
− σ 2

1 + cσ 2
ε2−μ + · · · .

(33)

Thus, the zero-range limit of equations (32) and (33) results in the connection matrix � of the
same form as in (9) with

χ = 1 + acλ and g = − a2λ2

3(1 + acλ)

⎧⎪⎪⎨
⎪⎪⎩

0 for P0

η(1 + acλ)−1 for P1

1 for P2

1 + η(1 + acλ)−1 for P3.

(34)

Here the P-sets shown in figure 3 are defined from the condition of finiteness of asymptotics
(32):

P0
.= {1 < μ < 3/2, ν > 3(μ − 1), τ = μ − 1},

P1
.= {1 < μ < 3/2, ν = 3(μ − 1), τ = μ − 1},

P2
.= {μ = 3/2, ν > 3/2, τ = 1/2},

P3
.= {μ = ν = 3/2, τ = 1/2}.

(35)

On the plane P0 we have a pure δ′-potential whereas the boundary line Lδδ′
.= P1 ∪ P2 ∪ P3

corresponds to the mixture of δ- and δ′-potentials.
Thus, depending on within which set in the {μ, ν, τ }-space the ε → 0 limit is considered,

the effective coupling constant g takes one of the values given by equations (29) or (34). Three
of these values, namely those calculated for the M-sets, have been obtained previously in [14]
for the particular case ρ = 0. As expected they appear to be the same for sufficiently large τ ,
i.e. under the condition τ > 2(μ − 1).

4. Discrete resonance sets with pl → 0 and qr → const > 0: case (ii)

As follows from the first equation (22), for non-trivial interactions (with μ > 1) the limit
pl → 0 leads to the inequality μ < 2, so for case (ii) we have to accomplish the asymptotic
analysis within the interval 1 < μ < 2. From the second equation (22) we find that the limit
qr → const �= 0 imposes the equation γ = ν/2. Under these conditions, we expand

�21 = p2l

(
1 +

p2l2

6

)[
cos

(
r0σ√

η

)
+ O(lν)

]

−
(

1 +
p2l2

2

)
σ√
η

l−ν/2

[
sin

(
r0σ√

η

)
+ O(lν)

]

− p2lρ

(
1 +

p2l2

6

)
σ√
η

l−ν/2

[
sin

(
r0σ√

η

)
+ O(lν)

]
+ · · · . (36)

Similarly as in section 3, we analyze this expansion in the two subcases as follows.

4.1. Resonances in the τ � 2(μ − 1) half-space: subcase (iia)

Consider first the situation when in expansion (36) one can arrange the most singular part in
the form

�
(0)
21 = σ 2ε1−μ cos

(
r0σ√

η

)
− σ√

η
ε−ν/2 sin

(
r0σ√

η

)
. (37)

10
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Figure 4. Regions of existence of non-zero transparency in the {μ, ν, τ }-space including the
particular case of two dimensions (τ ≡ 0) for cases (ii), (iii) and (iv). In the τ � 2(μ − 1)

half-space and the τ ≡ 0 plane (a-subcases): plane M4 (line �4), lines M5 (point �5) and N4,
point N5; line M6 (point �6) and point N6; plane �0, lines �1 and �2, point �3 are the sets
for the resonances given by equations (38), (51) and (61), respectively. In the τ = μ − 1 plane
(b-subcases): plane �0, lines �1 and �2, point �3; point P6; line �4 and point �5 are the sets
for the resonances given by equations (45), (57) and (67), respectively.

The cancellation of divergences in expansion (37) as ε → 0 occurs if 1−μ = −ν/2, resulting
in the relation ν = 2(μ − 1) and the equation

tan

(
r0σ√

η

)
= √

ησ. (38)

The last equation admits a countable set of roots {σn}∞n=1 (resonances), each of which depends
on two parameters: σn = σn(η, r0). Therefore, in the λ-space each solution depends on three
parameters: λn = λn(a, b, r0).

Using the equations ν = 2(μ − 1) and (38), the next term �
(1)
21 in expansion (36) can be

represented as

�
(1)
21 = −σ 4

n

3
cos

(
c2σn√

η

)
(l3−2μ + 3cl2−2μ+τ ) + · · · . (39)

Thus, the limit �21 is finite (zero or a non-zero constant) if in addition to the equation
ν = 2(μ − 1) the inequalities

1 < μ � 3/2, τ � 2(μ − 1) (40)

are satisfied. Concerning the other elements of the matrix �, under the equation ν = 2(μ−1)

and inequalities (40), and using equation (38) for discrete resonances, we get the ε → 0 limits:
�12 → 0,�11 → χ and �22 → χ−1 with

χ = cos

(
r0σn√

η

)−1

=
√

η σn

sin
(
r0σn/

√
η
) = (−1)n

√
1 + a2λn/b. (41)

Similar to case (i), the situation can be generalized to include the particular case with
c = 0 (ρ = 0). In this case, one can put τ = 0 and consider the sets �4 and �5 defined by
equations (16) and shown in figure 4. For c > 0 in the τ � 2(μ − 1) half-plane, one can

11



J. Phys. A: Math. Theor. 43 (2010) 105302 A V Zolotaryuk

define additionally the following regions:

M4
.= {1 < μ < 3/2, ν = 2(μ − 1), τ > 2(μ − 1)},

M5
.= {μ = 3/2, ν = 1, τ > 1},

N4
.= {1 < μ < 3/2, ν = 2(μ − 1), τ = 2(μ − 1)},

N5
.= {μ = 3/2, ν = 1, τ = 1}.

(42)

Then the matrix element g
.= limε→0 �21 is given at the resonance set {λn}∞n=1 by the equations

g = −a2λ2
n

3
cos(r0

√
bλn)

⎧⎪⎪⎨
⎪⎪⎩

0 for M4 and �4

1 for M5 and �5

3c for N4

1 + 3c for N5.

(43)

Thus, in the zero-range limit we have obtained the matrix � in form (9) with χ and g given
by equations (41) and (43), respectively.

4.2. Resonances in the τ = μ − 1 plane: subcase (iib)

Another possibility of the cancellation of divergences in the �21-term can be provided if we
add the first term in the expansion for the ρ-term in (36) to the group of terms �

(0)
21 given by

equation (37), so now three terms are involved in the cancellation procedure. Then instead of
(37), we have the expression

�
(0)
21 = σ 2ε1−μ cos

(
r0σ√

η

)
− σ√

η
ε−ν/2 sin

(
r0σ√

η

)
− cσ 3

√
η

ε1−μ−ν/2+τ sin

(
r0σ√

η

)
. (44)

From the equality of powers of ε at all the three terms in this expression we obtain the two
equalities 1 − μ = −ν/2 = τ + 1 − μ − ν/2 from which the equations ν = 2(μ − 1) and
τ = μ − 1 follow. In addition to these equations, similar to equation (38), the cancellation of
divergences completely occurs for the resonance set {σn}∞n=1 obeying the condition

tan

(
r0σ√

η

)
=

√
η σ

1 + cσ 2
. (45)

Note that the corresponding equation (38) for resonances with τ � 2(μ − 1) can be obtained
from equation (45) by putting c = 0.

Using equation for discrete resonances (45), the remaining part in expansion (36) can be
written as

�
(1)
21 = − σ 4

n

3
(
1 + cσ 2

n

) cos

(
r0σn√

η

)
ε3−2μ + · · · . (46)

Similarly, we define the sets

P4
.= {1 < μ < 3/2, ν = 2(μ − 1), τ = μ − 1},

P5
.= {μ = 3/2, ν = 1, τ = 1/2}

(47)

shown in figure 4. The matrix element g = g(λn) calculated at the resonance set {λn}∞n=1 is

g = − a2λ2
n

3(1 + acλn)
cos(r0

√
bλn)

{
0 for P4

1 for P5.
(48)

12
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Similarly, concerning the other elements of the matrix � = �(λn), under the conditions
ν = 2(μ − 1) and τ = μ − 1 and using equation (45), we obtain �12 → 0,�11 → χ and
�22 → χ−1 as ε → 0 where

χ = 1 + cσ 2
n

cos(r0σn/
√

η)
=

√
ησn

sin(r0σn/
√

η)
= (−1)n

√
(1 + acλn)2 + a2λn/b. (49)

Thus, in the zero-range limit we have obtained the matrix � in form (9) where χ and g are
given by equations (49) and (48), respectively.

5. Discrete resonance sets with pl → const > 0 and qr → const > 0: case (iii)

For this case both pl and qr are supposed to tend to non-zero constants as ε → 0. As above, it
follows from asymptotics (22) that the first limit pl → const implies μ = 2 while the second
limit qr → const leads to the condition γ = ν/2. Therefore, for this case we have to use
the expansions of equations (20) with μ = 2 and γ = ν/2. As a result, one can write the
following asymptotics for �21 in this case:

�21 = σ

l
sinh σ cos

(
ρσ√

η

)
− σ√

η
l−ν/2 cosh σ sin

(
r0σ√

η

)

− cσ 2

√
η

lτ−1−ν/2 sinh σ sin

(
r0σ√

η

)

+
k2

2

(
1√
η

l2−ν/2 − r0
√

η lν−1

)
sinh σ sin

(
r0σ√

η

)

+
ck2

2
lτ−1−ν/2

{
1√
η

sin

(
r0σ√

η

)
(sinh σ + σ cosh σ) l2

− sinh σ

[√
η sin

(
r0σ√

η

)
+ ρσ cos

(
r0σ√

η

)]
lν

}
+ · · · . (50)

The first three terms are more singular, whereas the next terms with the factor k2 are less
singular. Therefore, we have to analyze all the possibilities when the cancellation of
singularities occurs among the first three terms. Similarly, here we again have the two
possibilities of cancellation of divergences in the zero-range limit.

5.1. Resonances in the τ � 2(μ − 1) half-space: subcase (iiia)

Consider first the possibility of obtaining a finite zero-range limit of �21, when the first two
terms in (50) cancel out, while the third term vanishes or tends to a non-zero finite constant.
This situation occurs if and only if ν = 2 and τ � 2. The cancellation happens if the equation

tan

(
r0σ√

η

)
= √

η tanh σ or tan(r0

√
bλ) =

√
a/b tanh

√
aλ (51)

is fulfilled. This equation admits a countable set of roots {σn}∞n=0 or {λn}∞n=0 where each
root depends on two parameters: σn = σn(η, r0). Note that the first root σ0 lying in the
interval (0, π/2) exists if and only if r0 < η. Consequently, from asymptotics (50), after the
cancellation and using equation (51), at the resonance values σn, n ∈ N, we find

g = lim
ε→0

�21 = (−1)n+1σ 2
n sinh2 σn√

cosh2 σn + η sinh2 σn

{
0 for M6

c for N6
(52)

13
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with the sets

M6
.= {μ = ν = 2, τ > 2} and N6

.= {μ = ν = τ = 2} (53)

shown in figure 4. One can see from this expression that the constant g is a function of three
parameters: g = g(a, b, c). Next, it is easy to check that limε→0 �12 = 0.

The ε → 0 limits of the matrix elements �11 and �22 are obtained from the expansions

�11 = (cosh σ + cσετ−1 sinh σ) cos

(
r0σ√

η

)
+

√
η sinh σ sin

(
r0σ√

η

)
+ · · · ,

�22 = cosh σ cos

(
r0σ√

η

)
− (

sinh σ + cσετ−1 cosh σ
) sin(r0σ/

√
η)√

η
+ · · ·

(54)

for any τ > 0. When τ � 2, the terms with the factor c vanish. Using for this case equation
for resonances (51), one finds limε→0 �11 = χ and limε→0 �22 = χ−1 with

χ = cosh σn

cos(r0σn/
√

η)
=

√
η sinh σn

sin(r0σn/
√

η)
= (−1)n

√
cosh2 σn + η sinh2 σn. (55)

Thus, the matrix � takes the same form as in (9) with χ and g given by equations (55) and
(52), respectively.

5.2. Resonances on the τ = μ − 1 plane: subcase (iiib)

If we assume that only the first and the third terms in (50) cancel out, occurring at τ = ν/2, the
second term becomes infinite in the ε → 0 limit due to positivity of ν. The second and the third
terms also cannot cancel out because they are of the same sign. Therefore, the only remaining
possibility is the case when all the first three terms in (50) cancel out simultaneously. For this
case to be accomplished we obtain the necessary conditions ν = 2 and τ = 1. We denote

P6
.= {μ = ν = 2, τ = 1} (56)

and this point is shown in figure 4. The condition for resonances in this case becomes

tan

(
r0σ√

η

)
=

√
η tanh σ

1 + cσ tanh σ
, (57)

which also admits a countable set of roots {σn}∞n=0 where each root depends on three parameters:
σn = σn(η, c, r0). Note, as before, the root σ0 exists if and only if r0 < η.

As follows from expansion (50), at the resonances limε→0 �12 = 0 and limε→0 �21 = 0,
i.e. in connection matrix (9) we have g = 0. Applying the next equation (57) to asymptotics
(54) with τ = 1, we obtain as above that limε→0 �11 = χ and limε→0 �22 = χ−1, but now

χ = cosh σn + cσn sinh σn

cos(r0σn/
√

η)
=

√
η sinh σn

sin(r0σn/
√

η)

= (−1)n
√

(cosh σn + cσn sinh σn)2 + η sinh2 σn. (58)

Thus, in this subcase the connection matrix � is also of form (9) with χ given by equation (58)
and g = 0.

6. A resonance level with pl → const > 0 and qr → 0: case (iv)

As follows from expansions (22), for this case we have the limit pl → σ which occurs if
μ = 2 while the qr → 0 limit implies the inequality γ > ν/2. Thus, instead of expansions

14
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(24), (36) or (50), we have

�21 = σ

l
sinh σ

(
1 − q2r2

2

)
− cosh σ q2r

(
1 − q2r2

6

)

− σ sinh σ q2r

(
1 − q2r2

6

)
clτ−1 + · · · . (59)

Here again the two possibilities of cancellation of divergences take place.

6.1. A resonance level in the τ � 2(μ − 1) half-space: subcase (iva)

Now we arrange the group of the most singular terms in expansion (59) as

�
(0)
21 = σ

ε
sinh σ − r0σ

2

η
cosh σεγ−ν . (60)

Then for limε→0 �
(0)
21 to be finite, it is necessary to assume γ = ν−1 leading to the asymptotics

q2r = r0η
−1σ 2ε−1 + O(εν−1) and the equation

tanh σ = r0σ/η. (61)

This equation admits a single solution σ0 (or λ0) if r0 < η. Next, from expansion (59) we pick
out the less singular group

�
(1)
21 = −σ

l
sinh σ

q2r2

2
+

q4r3

6
cosh σ − cr0σ

3

η
sinh σ lτ−2

= r2
0 σ 3

2η

(
r0σ

3η
cosh σ − sinh σ

)
εν−3 − cr0σ

3

η
sinh σετ−2. (62)

It follows from this expression that the two inequalities ν � 3 and τ � 2 are necessary for
�

(1)
21 to be finite as ε → 0. According to these inequalities together with the equation μ = 2,

one can define the following sets shown in figure 4:

�0
.= {μ = 2, ν > 3, τ > 2},

�1
.= {μ = 2, ν = 3, τ > 2},

�2
.= {μ = 2, ν > 3, τ = 2},

�3
.= {μ = 2, ν = 3, τ = 2}.

(63)

On these sets, the matrix element g = g(λ0) defined as a zero-range limit of �
(1)
21 is given by

the equations

g = − a2r2
0 λ2

0

η

√
η2 − ar2

0 λ0

⎧⎪⎪⎨
⎪⎪⎩

0 for �0

r0/3 for �1

c for �2

c + r0/3 for �3.

(64)

Using the equation for resonances (61) together with the equality γ = ν − 1 and
inequalities ν � 3, τ � 2, one finds the zero-range limits of the other elements of the
matrix �: limε→0 �12 = 0 and limε→0 �11 = limε→0 �−1

22 = χ = χ(λ0) where

χ = cosh σ0 = η√
η2 − r2

0 σ 2
0

. (65)

Thus, in the τ � 2(μ−1) half-space or more precisely on the plane {μ = 2, ν � 3, τ � 2}
the connection matrix � has the same form (9) with χ and g given by equations (65) and
(64), respectively. The resonance set in the λ-space consists of one point being a root of
equation (61).
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6.2. A resonance level on the τ = μ − 1 plane: subcase (ivb)

Let us now rearrange the more singular terms in expansion (59) into the group where the
ρ-term is involved. Thus, instead of expansion (60) one can write

�
(0)
21 = σ

ε
sinh σ − r0σ

2

η
cosh σεγ−ν − cr0σ

3

η
sinh σεγ−ν−1+τ . (66)

Here from the equality of powers of ε we obtain the two conditions γ = ν − 1 and τ = 1.
Next, all the divergences in (66) cancel out if the equation

tanh σ = r0σ

η − cr0σ 2
(67)

holds. Again, if r0 < η, this equation admits a single root σ0. Using the equations γ = ν − 1
and τ = 1, the group of terms �

(1)
21 can be represented in the form

�
(1)
21 = −σ

ε
sinh σ

q2r2

2
+

q4r3

6
cosh σ + c1σ sinh σ

q4r3

6

= r2
0 σ 3

6η2
(−3η sinh σ + r0σ cosh σ + cr0σ

2 sinh σ)εν−3 + · · · . (68)

Using now equation (67), expansion (68) can be transformed into

�
(1)
21 = − r3

0 σ 4
0

3η

√(
η − cr0σ

2
0

)2 − r2
0 σ 2

0

εν−3 + · · · . (69)

It follows immediately from (69) that the necessary condition for the existence of a finite limit
of �

(1)
21 as ε → 0 is the inequality ν � 3.
Thus, we define the two sets

�4
.= {μ = 2, ν > 3, τ = 1},

�5
.= {μ = 2, ν = 3, τ = 1}

(70)

and according to equation (69) one can write for the ε → 0 limit of �21

g = − r3
0 σ 4

0

3η

√(
η − cr0σ

2
0

)2 − r2
0 σ 2

0

{
0 for �4

1 for �5.
(71)

Concerning the other elements of the matrix �, using equation (67) together with the
conditions γ = ν − 1, τ = 1 and the inequality ν � 3, we obtain as above the ε → 0 limits:
�12 → 0,�11 → χ and �22 → χ−1 with

χ = η cosh σ0

η − cr0σ
2
0

= η√(
η − cr0σ

2
0

)2 − r2
0 σ 2

0

. (72)

Thus, on the τ = μ − 1 plane or more precisely on the line {μ = 2, ν � 3, τ = 1}
the connection matrix � has the same form (9) with χ and g given by equations (72) and
(71), respectively. The resonance set in the λ-space consists of one point being a root of
equation (67). Note, when c = 0, this equation reduces to (61).

To conclude this section, one should emphasize that in case (iv) only one resonance level
σ0 = √

aλ0 is possible if r0 < η. In the opposite case, r0 � η, there are no resonances and the
system is completely opaque.
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7. A surface of δ′-potentials

So far we have studied a wide class of point interactions with a power regularization, without
any interest to which distributions they describe. The only general property used in our study
above was the presence of a barrier and a well parametrized according to equations (21). The
zero-range limit of any rectangular barrier–well pair 
′

ε(x) leads to the δ′(x) potential in the
particular cases when limits (3) hold. Below we shall find all the sets in the {μ, ν, τ }-space
where the δ′(x) potential does exist and then distinguish the corresponding δ′-potentials from
all the families of point interactions studied in the previous sections.

To describe the whole class of rectangular sequences of type (18) which converge to the
δ′(x) function in the sense of distributions, we calculate for any test function ϕ(x) ∈ C∞

0 the
integral

〈
′
ε, ϕ〉 = − Cε

(l + r)/2 + ρ
[Dεϕ(r/2 + ρ) − ϕ(−l/2) + O(l2, r2)] (73)

where

Cε
.= lh

(
l + r

2
+ ρ

)
and Dε

.= rd

lh
. (74)

In order to get the limit 〈
′
ε, ϕ〉 → −ϕ′(0), we have to impose in equation (73) the limits

Cε → C0 = 1 and Dε → D0 = 1 as ε → 0. In the particular case of the rectangles with
parametrization (21) these limits are transformed into

Cε = a

2
(1 + r0ε

ν−μ)ε2−μ + acε1−μ+τ → 1 and Dε = r0

η
εμ−1−ν+γ → 1, (75)

respectively.
The first of limits (75) can be realized on the following sets (see figure 5):

P6
.= {μ = ν = 2, τ = 1} if (1 + η)/2 + c = 1/a,

P7
.= {1 � μ < 2, ν = 2(μ − 1), τ = μ − 1} if η/2 + c = 1/a,

P8
.= {μ = 2, ν > 2, τ = 1} if 1/2 + c = 1/a,

Q0
.= {1 � μ < 2, ν > 2(μ − 1), τ = μ − 1} if ac = 1,

Q1
.= {1 � μ < 2, ν = 2(μ − 1), τ > μ − 1} if aη = 2,

Q2
.= {μ = 2, ν > 2, τ > 1} if a = 2,

Q3
.= {μ = ν = 2, τ > 1} if 1 + η = 2/a.

(76)

All these sets form a closed trihedral surface Sδ′
.= P6 ∪ P7 ∪ P8 ∪ Q0 ∪ Q1 ∪ Q2 ∪ Q3 in the

{μ, ν, τ }-space being an analog of the line Lδ′ in the {μ, ν}-space. Consider now which sets
considered in the previous sections belong to Sδ′ . One finds that M4 ∪ M5 ∪ N4 ∪ N5 ⊂ Q1

(iia), ∪j=3
j=0�j ⊂ Q2 (iva), M6 ∪ N6 ⊂ Q3 (iiia) and ∪j=3

j=0Pj ⊂ Q0 (ib), P4 ∪ P5 ⊂ P7 (iib).
However, the constraints in the right column of (76) make narrow cases (ii) and (iii).

The second of limits (75) is fulfilled if γ = 1 − μ + ν and r0 = η. The first of these
equalities holds for all the cases considered above because in cases (ii) and (iii) γ = ν/2 and
ν = 2(μ − 1) and in case (iv) γ = ν − 1 and μ = 2. The second equality is valid in case (ia)
while in cases (ii) and (iii) r0 is arbitrary. In case (ib) we have

D0 = r0

η
= 1

1 + λ
< 1(ac = 1) (77)

and r0 must be less η in case (iv) in order to provide the roots of equations (61) or (67).
Therefore D0 = 1 in all the cases except for (ib) and (iv).
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Figure 5. Trihedral surface Sδ′ obtained from the ε → 0 distributional limit of regularizing
sequence (18) with parametrization (21). This surface is formed by apex P6, edges P7, P8, Q3 and
planes Q0, Q1, Q2. For two dimensions (τ ≡ 0) point �6, lines �7 and �8 form the closed line
Lδ′ where the δ′(x) function is obtained from the same regularizing sequence (18) but now with
ρ ≡ 0.

Thus, the δ′(x) function is well defined only if C0 = 1 and D0 = 1 and these equalities
can be satisfied for cases (ii) and (iii). Due to inequalities (27), we have C0 = 0 for case (ia)
describing the δ-interaction and D0 < 1 for cases (ib) and (iv). Note that limits (3) hold if
(C0,D0) = (1, 1). However, using equation (77), one can re-define parametrization (21) for
a non-zero and non-resonant δ′-potential in case (ib) as follows:

l = ε, h = aε−μ, r = η

1 + λ
ε1−μ+ν, d = (1 + λ)bε−ν, ρ = a−1εμ−1 (78)

involving here the coupling constant λ. Then D0 = 1, limits (3) take place and the
corresponding sequence 
′

ε(x) converges to the δ′(x) function in the sense of distributions.

8. Concluding remarks

Thus, using representation (21) of the rectangular barrier–well parameters l, h, d, r and ρ via
the powers μ, ν and τ (the fourth power γ is expressed in terms of these three powers) of
the squeezing parameter ε, we have constructed in the ε → 0 limit a whole family of point
interactions which includes δ- and δ′-potentials as particular cases. The third parameter τ

determines how rapidly the barrier and the well are approaching each other as ε → 0. One
can distinguish three sets in the {μ, ν, τ }-space with 1 < μ � 2 and ν > 0: the planes
τ ≡ 0, τ = μ − 1 and the half-space τ � 2(μ − 1). The plane τ ≡ 0 corresponds to the
case when the barrier–well distance is zero (ρ = 0 or c = 0). This case studied earlier in
[14] corresponds to the second repeated limit (5). The τ = μ − 1 plane is isolated from the
τ � 2(μ − 1) half-space. Particularly, the point {μ = ν = 2, τ = 1} which corresponds to
ρ = cε is illustrated in figure 1 by path 3 while the line {μ = ν = 2, τ � 2} corresponds
to all the paths running below path 4 including this one for which ρ = cε2. Note that the
case with the τ � 2(μ − 1) half-space cannot be fitted in regularization (7). Nevertheless, the
convergence proof as ε → 0 seems to be possibly extended to the case of an appropriately
deformable function v(ε; ξ) during the limiting procedure.

The construction of point interactions has been realized in this paper via approximating
singular potential (2) by regular potential (18) using the transfer matrix approach to yield the
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explicit solutions in the form of matrix elements (20). This approach is useful when applied
for the Hamiltonian

Hε = −d2/dx2 + λ
′
ε(x) (79)

with 
′
ε(x) being a compactly supported piecewise constant function. For a general

case of 
′
ε(x) defined according to (7), Hamiltonian (79) can be proved to converge

in the norm resolvent sense to the limiting Hamiltonian H = H(λ) with the domain
{ψ(x) ∈ W 2

2 (R\{0})|ψ(+0) = χψ(−0), ψ ′(+0) − χ−1ψ(−0) = gψ(−0)} where λ belongs
to a resonant set and W 2

2 (R\{0}) stands as usual for the Sobolev space of functions which
belong to L2(R\{0}) together with their derivatives up to the second order. In this way the
norm resolvent convergence proof has been realized for Hamiltonian (79) used as a model
for approximating bent quantum waveguides by quantum graphs under regularization (7) with
the assumption

∫
R

v(ξ) dξ �= 0 [8, 9]. The result in [8] coincides with that obtained in
section 5.2 where χ �= 1 and g = 0. It has been extended in [9] to include a more general
limit with g �= 0. Very recently [18] Hε has been proved to converge to H as ε → 0 in the
norm resolvent sense under the δ′-like properties:

∫
R

v(ξ) dξ = 0 and
∫

R
ξv(ξ) dξ = −1.

The calculations which realize the ε → 0 limit of the Schrödinger equation with a
rectangular-like potential using the transfer matrix approach, for instance, � with elements
(20), seem to be more simple compared to the analysis of the norm resolvent convergence
of Hamiltonian (79). In our case it is sufficient to carry out properly the cancellation of
divergences emerging from the kinetic energy operator −d2/dx2 and the potential λ
′

ε(x)

in the ε → 0 limit only for the (most singular) element �21. Due to this cancellation, H
cannot be represented as the sum of the kinetic energy operator −d2/dx2 and the singular
potential λδ′(x). The sum of these operators is well defined only if ε > 0 when the domain
of Hε is the space W 2

2 (R), the functions of which are continuous together with their first
derivatives at the origin x = 0. However, a function ψ(x) continuous at x = 0 except for
ψ(x) ≡ 0 cannot fulfill the limiting equation Hψ = Eψ because the product δ′(x)ψ(x)

in the sense of distributions is ψ(0)δ′(x) − ψ ′(0)δ(x). Therefore, the domain of the total
Hamiltonian H cannot coincide with the domain of the kinetic energy operator −d2/dx2 alone
defined on the whole axis R. Concerning the potential term δ′(x)ψ(x), it is ambiguous for
any wavefunction ψ(x) discontinuous at x = 0. This ambiguity means that in the Schrödinger
equation with the δ′-potential there exists a hidden (in general, multi-dimensional) parameter
fixing a regularizing sequence 
′

ε(x).
As demonstrated throughout the paper, the cancellation proceeds in different ways in

the τ � 2(μ − 1) half-space (a-subcases) and on the τ = μ − 1 plane (b-subcases). As a
result, the limiting transfer matrix � which connects the two-sided boundary conditions for
the wavefunction ψ(x) at x = ±0 takes the form as in equation (9). In fact, the cancellation of
singularities occurs even in the volume M0 (or on the plane �0 in the case of two dimensions)
where � equals the matrix unit I (full transmission). The surface boundary Sδ of this volume
(or the line boundary Lδ of �0) splits the regions of full and zero transmission allowing on
this boundary the existence of the δ-interaction with the effective coupling constant g given by
equations (29). Next, in the region of zero transmission the ‘islands’ with resonant tunneling
(see sections 4 and 5) and a partial non-zero and non-resonant transmission (see section 3.2)
appear on the trihedral surface Sδ′ describing all the ways of regularizing the δ′(x) function
under assumption (21). For all types of a partial transmission, in equation (9) we have χ �= 1.

Finally, it should be stressed that for all the ways of three-dimensional parametrization
(21), μ ∈ (1, 2], resulting in the existence of point interactions with a non-zero (complete or
partial, resonant or non-resonant) transmission, there exists the cancellation of divergences
described in detail in each section. However, the resulting family of point interactions is not
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the only case where the cancellation of divergences in the zero-range limit takes place. Thus,
the similar cancellation procedure has been realized to construct δ-like point interactions in
two [20] and three [21] dimensions as exactly solvable models. These models describe a
quantum particle moving in the two- or three-dimensional space from which the origin is
removed. They are not so rich as one-dimensional point interactions because the allowed
self-adjoint extensions in two and three dimensions depend only on one parameter, instead
of four parameters in one dimension, as given by connection matrix (12). However, the
key point in the regularization procedure for the point interactions in one, two and three
dimensions is the same: (i) the existence of non-trivial point interactions is a result of
the cancellation of divergences coming from the kinetic and potential energy terms and (ii) the
domain of the limiting total Hamiltonian are the functions which belong neither to the domain
of the kinetic energy operator nor to the domain of the potential energy operator. A similar
situation is known not only in the theory of differential operators with singular pertubations but
also in the quantum field theory under constructing (non-trivial and renormalized) quantized
Hamiltonians in different models such as the Yukawa2 and φ4

3 interactions (for more details
see [22] as well as the comments with extensive bibliography on the constructive quantum
field theory given in [23]).
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